Nuclear Magnetic Resonance
The Nuclear Magnetic Resonance (NMR) Core Facility at the National and Kapodistrian University of Athens is part of the horizontal infrastructure of the School of Sciences. The purpose of the facility is to serve the research interests of the academic community, and all other interested parties, in the field of Nuclear Magnetic Resonance. Collaborations including joint publications, research proposals, and funding are highly encouraged. Moreover, the goal of the NMR Core Facility is to offer training in state-of-the-art NMR instrumentation and software. The available NMR systems are equipped with different state-of-the-art, highly sensitive probes for conducting experiments on liquid, solid and semi-solid samples. It is possible to study small molecules (e.g. drugs, synthetic compounds, natural products, etc.), polymers, as well as the interactions of small molecules with biomolecules (e.g. proteins, nucleic acids). The unit consists of two subunits: The 500 MHz and the 400 MHz NMR.
Staff
Head of Unit
Professor Thomas Mavromoustakos
Nuclear Magnetic Resonance Unit
Deputy Head of Unit
Professor Emmanuel Mikros
Nuclear Magnetic Resonance Unit
Principal Investigator
Dr. Antigoni Cheilari
Nuclear Magnetic Resonance 500MHz Sub Unit
Principal Investigator
Dr. Demetra Benaki
Nuclear Magnetic Resonance 400MHz Sub Unit
400 MHz NMR SUB UNIT
SERVICES
- Supports 1D & 2D experiments (¹H, ¹H with solvent suppression, ¹³C, ¹³C-DEPT, ¹⁵N, ³¹P, J-Resolved, COSY, HSQC-DEPT, HMQC, HMBC, TOCSY, NOESY, ROESY, CPMG, DOSY) and advanced NOAH & UTOPIA supersequences.
- Ideal for Physics, Chemistry, and Life Sciences, covering small molecule structure determination, qualitative & quantitative analysis, pharmaceuticals, biochemistry, and metabolomics (biological samples & plant extracts).
TECHNOLOGY AND EQUIPMENT
AVANCE NEO 400 MHz System
- This system features a 9.4 Tesla ASCEND superconducting magnet on a Bruker Avance NEO platform, equipped with a 24-position automatic sample changer (SampleCASE 24) and advanced transceivers, amplifiers, and pre-amplifiers (1H, BB19F, 2H and 10 A gradient amplifier) for high-performance NMR experiments.
- It includes a Bruker Smart Variable Temperature Control unit, BCU I Cooler, and a high-sensitivity iProbe detector (5 mm Smart Probe) with a wide temperature range (-150 °C to 150 °C) and high signal sensitivity across multiple nuclei (1H, 13C, 19F, 31P, 15N).
- Controlled by TopSpin 4, SmartDriveNMR, and CMC-assist for spectrum processing and integration.

AVANCE NEO 400 MHz
500 MHz NMR SUB UNIT
SERVICES
- The system supports routine 1D & 2D experiments (¹H, ¹³C, DEPT, J-resolved, COSY, HSQC, HMBC, TOCSY, NOESY, ROESY, DOSY) and advanced supersequences (NOAH, UTOPIA). It also enables detection of various nuclei (e.g., ⁷Li, ¹¹B, ¹⁵N, ¹⁹F, 27Al, ²⁹Si, ³¹P, ³⁹K, ⁷⁷Se, 79Br, 113Cd, 119Sn,¹⁹⁵Pt) and supports solid, semi-solid, and liquid samples with specialized probes.
- Ideal for applications in Chemistry, Physics, Life Sciences, and Metabolomics (Biological samples and plant extracts), including small molecule analysis (structure elucidation and quantitative analysis), polymer studies, structural biology, and pharmaceuticals.
TECHNOLOGY AND EQUIPMENT
AVANCE NEO 500 MHz System
- High field ASCEND Superconducting Magnet (11.76 Tesla)
- Cooled Automatic Sample Changer (SampleCASE Cooled 24) by BCU I Cooler
- & Transceivers, Signal Amplifiers, and pre-amplifiers (1H, BB19F, BB31P, 2H) )
- Temperature Control (Bruker Smart Variable Temperature Control)
- Cooling System (BCU II Cooler)
Available Detectors
Liquid State:
- PRODIGY BBO CryoProbe (5 mm): -40 °C to 150 °C, high sensitivity for ¹H, ¹³C, ¹⁹F, ³¹P, and ¹⁵N
- BBI Probe (5 mm): -150°C to 150°C, detects nuclei from ³¹P to ¹⁰⁹Ag
- Low-frequency BBO Probe (10 mm): -130 °C to 150 °C
Solid State:
- Solid-State iProbe (4 mm): -80 °C to 200 °C, up to 15 kHz spinning rate
Semi-solid State:
- HRMAS iProbe (4 mm): -30 °C to 80 °C, up to 15 kHz spinning rate
The system runs on TopSpin 4, with specialized software such as SmartDriveNMR, CMC-assist, CMC-ce, AssureNMR, and AMIX for advanced spectral processing and result integration.

AVANCE NEO 500 MHz
nmr unit publications
AV500 sub-unit publications
2025
Apostolides, D. E.; Michael, G.; Patrickios, C. S.; Sakai, T.; Kyroglou, I.; Kasimatis, M.; Iatrou, H.; Prévost, S.; Gradzielski, M. The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(Ethylene Glycol)-b-Oligo(L-Alanine)]. Gels 2025, 11 (5), 331. https://doi.org/10.3390/GELS11050331/S1.
Zoupanou, N.; Papakyriakopoulou, P.; Georgiou, N.; Cheilari, A.; Javornik, U.; Podbevsek, P.; Tzeli, D.; Valsami, G.; Mavromoustakos, T. Spectroscopic Characterization Using 1H and 13C Nuclear Magnetic Resonance and Computational Analysis of the Complex of Donepezil with 2,6-Methyl-β-Cyclodextrin and Hydroxy Propyl Methyl Cellulose. Molecules 2025, Vol. 30, Page 1169 2025, 30 (5), 1169. https://doi.org/10.3390/MOLECULES30051169.
2024
Georgiou, N.; Karta, D.; Cheilari, A.; Merzel, F.; Tzeli, D.; Vassiliou, S.; Mavromoustakos, T. Synthesis of Thiazolidin-4-Ones Derivatives, Evaluation of Conformation in Solution, Theoretical Isomerization Reaction Paths and Discovery of Potential Biological Targets. Molecules 2024, 29 (11), 2458. https://doi.org/10.3390/MOLECULES29112458/S1.
Kokkosi, A.; Garofallidou, E.; Zacharopoulos, N.; Tsoureas, N.; Diamanti, K.; Thomaidis, N. S.; Cheilari, A.; Machalia, C.; Emmanouilidou, E.; Philippopoulos, A. I. Ruthenium P-Cymene Complexes Incorporating Substituted Pyridine–Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties. Molecules 2024, 29 (13), 3215. https://doi.org/10.3390/MOLECULES29133215/S1.
Dritsopoulos, A.; Zacharopoulos, N.; Peyret, A. E.; Karampella, E.; Tsoureas, N.; Cheilari, A.; Machalia, C.; Emmanouilidou, E.; Andreopoulou, A. K.; Kallitsis, J. K.; Philippopoulos, A. I. Ruthenium-p-Cymene Complexes Incorporating Substituted Pyridine–Quinoline Ligands with –Br (Br-Qpy) and –Phenoxy (OH-Ph-Qpy) Groups for Cytotoxicity and Catalytic Transfer Hydrogenation Studies: Synthesis and Characterization. Chemistry 2024, 6 (4), 773–793. https://doi.org/10.3390/CHEMISTRY6040046/S1.
Rallis, S.; Tomou, E. M.; Drakopoulou, S. K.; Tzakos, A. G.; Thomaidis, N. S.; Skaltsa, H. NMR-Guided Isolation of Undescribed Triterpenoid Saponins from Lysimachia Atropurpurea L. Phytochemistry 2024, 223. https://doi.org/10.1016/J.PHYTOCHEM.2024.114104.
Salmas, C. E.; Georgopoulos, S.; Leontiou, A.; Sakavitsi, V.; Cheilari, A.; Kollia, E.; Zaharioudakis, K.; Ragkava, E.; Karabagias, V. K.; Andritsos, N. D.; Konstantinou, I.; Proestos, C.; Kehayias, G.; Giannakas, A. E. Crayfish Waste-Shells Integrated Valorization for Added Value Materials Production: Calcium Hydroxide, Calcium Carbonate, Chitin, Chitosan, and N-S Co-Doped Carbon Quantum Dots. Waste Biomass Valorization 2024, 15 (10), 5947–5963. https://doi.org/10.1007/S12649-024-02559-4/TABLES/5.
Kolvatzis, C.; Tsiantas, K.; Tsakiridis, I.; Christodoulou, P.; Cheilari, A.; Kalogiannidis, I.; Zoumpoulakis, P.; Athanasiadis, A. Metabolomic Biomarkers in Amniotic Fluid for Early Diagnosis of Preterm Birth and Fetal Growth Restriction. Folia Med 2024, 66 (5), 717–720. https://doi.org/10.3897/FOLMED.66.E137403.
2023
Leonis, G.; Vakali, V.; Zoupanou, N.; Georgiou, N.; Diamantis, D. A.; Tzakos, A. G.; Mavromoustakos, T.; Tzeli, D. Computational and Spectroscopic Analysis of the Quercetin Encapsulation in (2HP-β-CD)2 and (2,6Me-β-CD)2 Complexes. J Mol Struct 2023, 1294, 136430. https://doi.org/10.1016/J.MOLSTRUC.2023.136430.
Kolvatzis, C.; Christodoulou, P.; Kalogiannidis, I.; Tsiantas, K.; Tsakiridis, I.; Kyrkou, C.; Cheilari, A.; Thomaidis, N. S.; Zoumpoulakis, P.; Athanasiadis, A.; Michaelidou, A. M. Metabolomic Profiling of Second-Trimester Amniotic Fluid for Predicting Preterm Delivery: Insights from NMR Analysis. Metabolites 2023, 13 (11), 1147. https://doi.org/10.3390/METABO13111147/S1.
Georgiou, N.; Chontzopoulou, E.; Cheilari, A.; Katsogiannou, A.; Karta, D.; Vavougyiou, K.; Hadjipavlou-Litina, D.; Javornik, U.; Plavec, J.; Tzeli, D.; Vassiliou, S.; Mavromoustakos, T. Thiocarbohydrazone and Chalcone-Derived 3,4-Dihydropyrimidinethione as Lipid Peroxidation and Soybean Lipoxygenase Inhibitors. ACS Omega 2023, 8 (13), 11966–11977. https://doi.org/10.1021/ACSOMEGA.2C07625/ASSET/IMAGES/MEDIUM/AO2C07625_0016.GIF.
2022
Georgiou, N.; Cheilari, A.; Karta, D.; Chontzopoulou, E.; Plavec, J.; Tzeli, D.; Vassiliou, S.; Mavromoustakos, T. Conformational Properties and Putative Bioactive Targets for Novel Thiosemicarbazone Derivatives. Molecules 2022, 27 (14), 4548. https://doi.org/10.3390/MOLECULES27144548/S1.
AV400 sub-unit publications
Coming Soon
Book our Equipment
We look forward to supporting your research with the best tools and expertise available. Explore our resources and unlock new possibilities at NKUA Core Facilities today!
You can use your NKUA account to book our equipment quickly and easily by clicking the button below.
If you are an external user, please use the appropriate booking form.
Availability
External Users
Book our Equipment
We look forward to supporting your research with the best tools and expertise available. Explore our resources and unlock new possibilities at NKUA Core Facilities today!
You can use your NKUA account to book our equipment quickly and easily by clicking the button below.
If you are an external user, please use the appropriate booking form.